2.1.2.6. Noise Models
2.1.2.6.1. Main Functions
- teaspoon.MakeData.DynSysLib.noise_models.exponential_noise(sigma=1.0, L=1000, fs=1, SampleSize=1000)[source]
Generate a noise signal sampled from an exponential distribution.
- Parameters:
sigma (Optional[float]) – Exponential distribution scale.
L (Optional[int]) – amount of time to solve simulation for.
fs (Optional[int]) – sampling rate for simulation.
SampleSize (Optional[int]) – length of sample at end of entire time series
- Returns:
Array of the time indices as t and the simulation time series ts
- Return type:
array
- teaspoon.MakeData.DynSysLib.noise_models.gaussian_noise(sigma=1.0, mu=0.0, L=1000, fs=1, SampleSize=1000)[source]
Generate a noise signal sampled from a Gaussian distribution.
- Parameters:
sigma (Optional[float]) – Standard deviation of the normal distribution.
mu (Optional[float]) – Mean of the normal distribution.
L (Optional[int]) – amount of time to solve simulation for.
fs (Optional[int]) – sampling rate for simulation.
SampleSize (Optional[int]) – length of sample at end of entire time series
- Returns:
Array of the time indices as t and the simulation time series ts
- Return type:
array
- teaspoon.MakeData.DynSysLib.noise_models.rayleigh_noise(sigma=1.0, L=1000, fs=1, SampleSize=1000)[source]
Generate a noise signal sampled from a Rayleigh distribution.
- Parameters:
sigma (Optional[float]) – Rayleigh distribution mode.
L (Optional[int]) – amount of time to solve simulation for.
fs (Optional[int]) – sampling rate for simulation.
SampleSize (Optional[int]) – length of sample at end of entire time series
- Returns:
Array of the time indices as t and the simulation time series ts
- Return type:
array
- teaspoon.MakeData.DynSysLib.noise_models.uniform_noise(a=-1.0, b=1.0, L=1000, fs=1, SampleSize=1000)[source]
Generate a noise signal sampled from a uniform distribution.
- Parameters:
a (Optional[float]) – Uniform distribution lower bound.
b (Optional[float]) – Uniform distribution upper bound.
L (Optional[int]) – amount of time to solve simulation for.
fs (Optional[int]) – sampling rate for simulation.
SampleSize (Optional[int]) – length of sample at end of entire time series
- Returns:
Array of the time indices as t and the simulation time series ts
- Return type:
array