2.1.2.6. Noise Models
2.1.2.6.1. Main Functions
- teaspoon.MakeData.DynSysLib.noise_models.exponential_noise(sigma=1.0, L=1000, fs=1, SampleSize=1000)[source]
- Generate a noise signal sampled from an exponential distribution.   - Parameters:
- sigma (Optional[float]) – Exponential distribution scale. 
- L (Optional[int]) – amount of time to solve simulation for. 
- fs (Optional[int]) – sampling rate for simulation. 
- SampleSize (Optional[int]) – length of sample at end of entire time series 
 
- Returns:
- Array of the time indices as t and the simulation time series ts 
- Return type:
- array 
 
- teaspoon.MakeData.DynSysLib.noise_models.gaussian_noise(sigma=1.0, mu=0.0, L=1000, fs=1, SampleSize=1000)[source]
- Generate a noise signal sampled from a Gaussian distribution.   - Parameters:
- sigma (Optional[float]) – Standard deviation of the normal distribution. 
- mu (Optional[float]) – Mean of the normal distribution. 
- L (Optional[int]) – amount of time to solve simulation for. 
- fs (Optional[int]) – sampling rate for simulation. 
- SampleSize (Optional[int]) – length of sample at end of entire time series 
 
- Returns:
- Array of the time indices as t and the simulation time series ts 
- Return type:
- array 
 
- teaspoon.MakeData.DynSysLib.noise_models.rayleigh_noise(sigma=1.0, L=1000, fs=1, SampleSize=1000)[source]
- Generate a noise signal sampled from a Rayleigh distribution.   - Parameters:
- sigma (Optional[float]) – Rayleigh distribution mode. 
- L (Optional[int]) – amount of time to solve simulation for. 
- fs (Optional[int]) – sampling rate for simulation. 
- SampleSize (Optional[int]) – length of sample at end of entire time series 
 
- Returns:
- Array of the time indices as t and the simulation time series ts 
- Return type:
- array 
 
- teaspoon.MakeData.DynSysLib.noise_models.uniform_noise(a=-1.0, b=1.0, L=1000, fs=1, SampleSize=1000)[source]
- Generate a noise signal sampled from a uniform distribution.   - Parameters:
- a (Optional[float]) – Uniform distribution lower bound. 
- b (Optional[float]) – Uniform distribution upper bound. 
- L (Optional[int]) – amount of time to solve simulation for. 
- fs (Optional[int]) – sampling rate for simulation. 
- SampleSize (Optional[int]) – length of sample at end of entire time series 
 
- Returns:
- Array of the time indices as t and the simulation time series ts 
- Return type:
- array