teaspoon Logo
  • 1. Getting Started
    • 1.1. Installation
    • 1.2. Optional Dependencies
    • 1.3. Issues
  • 2. Modules
    • 2.1. Make Data (MakeData) Module
      • 2.1.1. Point Cloud Data Generation (PointCloud) Module
      • 2.1.2. Dynamical Systems Library (DynSysLib) Module
    • 2.2. Parameter Selection Module
      • 2.2.1. Mutual Information
      • 2.2.2. Auto-correlation
      • 2.2.3. Fourier Spectrum Analysis
      • 2.2.4. Permutation Auto Mutual Information
      • 2.2.5. Multi-scale Permutation Entropy
      • 2.2.6. False Nearest Neighbors
    • 2.3. Signal Processing (SP) Module
      • 2.3.1. Time Series Analysis (TSA) Tools
      • 2.3.2. Network Representation of Time Series
      • 2.3.3. Information Module
      • 2.3.4. Miscellaneous
      • 2.3.5. Texture Analysis
      • 2.3.6. Stochastic P-Bifurcation Detection
      • 2.3.7. Parameter Path Optimization
    • 2.4. Topological Data Analaysis (TDA) Module
      • 2.4.1. Persistent Homology of Networks (PHN) Module
      • 2.4.2. Distances
      • 2.4.3. Drawing
      • 2.4.4. Persistence
      • 2.4.5. Zero Dimensional Sublevel Set Persistence (SLSP) Module
      • 2.4.6. Magnitude
      • 2.4.7. Fast Zigzag
    • 2.5. Machine Learning (ML) Module
      • 2.5.1. Datasets
      • 2.5.2. Featurization
      • 2.5.3. Classification
      • 2.5.4. References
    • 2.6. Data Assimilation and Forecasting (DAF)
      • 2.6.1. Forecasting
      • 2.6.2. Data Assimilation
  • 3. Example Notebooks
    • 3.1. Computing Wasserstein and Bottleneck Distances
    • 3.2. Computing Features from Persistence Images
  • 4. Contributing
    • 4.1. Contributing to Documentation
  • 5. License
  • 6. Citing
teaspoon
  • Search


© Copyright 2024, Munch and Khasawneh.

Built with Sphinx using a theme provided by Read the Docs.