======================================================== False Nearest Neighbors (FNN) for dimension (n) ======================================================== .. automodule:: teaspoon.parameter_selection.FNN_n :members: The following is an example implementing the False Nearest Neighbors (FNN) algorithm for the dimension:: from teaspoon.parameter_selection.FNN_n import FNN_n import numpy as np fs = 10 t = np.linspace(0, 100, fs*100) ts = np.sin(t) tau=15 #embedding delay perc_FNN, n = FNN_n(ts, tau, plotting = True) print('FNN embedding Dimension: ',n) Where the output for this example is:: FNN embedding Dimension: 2 .. figure:: ../../figures/FNN_fig.png :scale: 16 %