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1 Maps

1.1 Logistic Map

The logistic map [21] was generated as
xn+1 = rxn(1− xn), (1)

where we chose the parameters x0 = 0.5 and r = 3.6 for a chaotic state. You can set r = 3.5 for a periodic
response. We solve this system for 1000 data points and keep the second 500 to avoid transients. The
resulting time series is shown below in Fig. 1.

Figure 1
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1.2 Hénon Map

The Hénon map [17] was solved as

xn+1 = 1− ax2n + yn,

yn+1 = bxn,
(2)

where we chose the parameters a = 1.20, b = 0.30, and c = 1.00 for a chaotic state with initial conditions
x0 = 0.1 and y0 = 0.3. You can set a = 1.25 for a periodic response. We solve this system for 1000 data
points and keep the second 500 to avoid transients. The resulting time series is shown below in Fig. 2.

Figure 2
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1.3 Sine Map

The Sine map is defined as

xn+1 = A sin(πxn) (3)

where we chose the parameter A = 1.0 for a chaotic state with initial condition x0 = 0.1. You can also
change A = 0.8 for a periodic response. We solve this system for 1000 data points and keep the second 500
to avoid transients. The resulting time series is shown below in Fig. 3.

Figure 3
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1.4 Tent Map

The Tent map is defined [10] as

xn+1 = Amin([xn, 1− xn]) (4)

where we chose the parameter A = 1.50 for a chaotic state with initial condition x0 = 1/
√

2. You can also
change A = 1.05 for a periodic response. We solve this system for 1000 data points and keep the second 500
to avoid transients. The resulting time series is shown below in Fig. 4.

Figure 4
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1.5 Linear Congruential Generator Map

The Linear Congruential Generator map is defined as

xn+1 = Amin([xn, 1− xn]) (5)

where we chose the parameters a = 1.1, b = 54773, and c = 259200 for a chaotic state with initial condition
x0 = 0.1. You can set a = 1.1 for a periodic response. We solve this system for 1000 data points and keep
the second 500 to avoid transients. The resulting time series is shown below in Fig. 5.

Figure 5
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1.6 Ricker’s Population Map

The Ricker’s Population map is defined [23] as

xn+1 = axne
−xn (6)

where we chose the parameter a = 20 for a chaotic state with initial condition x0 = 0.1. You can set
a = 13 for a periodic response. We solve this system for 1000 data points and keep the second 500 to avoid
transients. The resulting time series is shown below in Fig. 6.

Figure 6
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1.7 Gauss Map

The Gauss map is defined [18] as

xn+1 = e−αx
2
n + β (7)

where we chose the parameters α = 6.20 and β = −0.35 for a chaotic state with initial condition x0 = 0.1.
You can set β = −0.20 for a periodic response. We solve this system for 1000 data points and keep the
second 500 to avoid transients. The resulting time series is shown below in Fig. 7.

Figure 7

9



1.8 Cusp Map

The Cusp map is defined [5] as

xn+1 = 1− a
√
|xn| (8)

where we chose the parameter a = 1.2 for a chaotic state with initial condition x0 = 0.5. You can set
a = 1.1 for a periodic response. We solve this system for 1000 data points and keep the second 500 to avoid
transients. The resulting time series is shown below in Fig. 8.

Figure 8
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1.9 Pincher’s Map

The Pincher’s map is defined [?] as

xn+1 = | tanh(s(xn − c)| (9)

where we chose the parameters s = 1.6 and c = 0.5 for a chaotic state with initial condition x0 = 0.0. You
can set s = 1.3 for a periodic response. We solve this system for 1000 data points and keep the second 500
to avoid transients. The resulting time series is shown below in Fig. 10.

Figure 9
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1.10 Sine Circle Map

The Sine Circle map is defined [3] as

xn+1 = xn + ω −
[
k

2π
sin(2πxn)

]
(mod1) (10)

where we chose the parameters ω = 0.5 and k = 2.0 for a chaotic state with initial condition x0 = 0.0. You
can set k = 1.5 for a periodic response. We solve this system for 1000 data points and keep the second 500
to avoid transients. The resulting time series is shown below in Fig. 10.

Figure 10
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1.11 Lozi Map

The Lozi map is defined [14] as

xn+1 = 1− a|xn|+ byn

yn+1 = xn
(11)

where we chose the parameters a = 1.7 and b = 0.5 for a chaotic state with initial conditions x0 = −0.1 and
y0 = 0.1. You can set a = 1.5 for a periodic response. We solve this system for 1000 data points and keep
the second 500 to avoid transients. The resulting time series is shown below in Fig. 11.

Figure 11
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1.12 Delayed Logistic Map

The Delayed Logistic map is defined [?] as

xn+1 = axn(1− yn)

yn+1 = xn
(12)

where we chose the parameter a = 2.27 for a chaotic state with initial conditions x0 = 0.001 and y0 = 0.001.
You can set a = 2.20 for a periodic response. We solve this system for 1000 data points and keep the second
500 to avoid transients. The resulting time series is shown below in Fig. 12.

Figure 12
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1.13 Tinkerbell Map

The Tinkerbell map is defined [16] as

xn+1 = x2n − y2n + axn + byn

yn+1 = 2xnyn + cxn + dyn
(13)

where we chose the parameters a = 0.9, b = −0.6, c = 2.0, and d = 0.5 for a chaotic state with initial
conditions x0 = 0.0 and y0 = 0.5. You can set a = 0.7 for a periodic response. We solve this system for 1000
data points and keep the second 500 to avoid transients. The resulting time series is shown below in Fig. 13.

Figure 13
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1.14 Burger’s Map

The Burger’s map is defined [6] as

xn+1 = axn − y2n
yn+1 = byn + xnyn

(14)

where we chose the parameters a = 0.75 and b = 1.75 for a chaotic state with initial conditions x0 = −0.1
and y0 = 0.5. You can set b = 1.60 for a periodic response. We solve this system for 1000 data points and
keep the second 500 to avoid transients. The resulting time series is shown below in Fig. 14.

Figure 14
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1.15 Holme’s Cubic Map

The Holme’s Cubic map is defined [8] as

xn+1 = yn

yn+1 = −bxn + dyn − y3n
(15)

where we chose the parameters b = 0.20 and d = 2.77 for a chaotic state with initial conditions x0 = −0.1
and y0 = 0.5. You can set b = 0.27 for a periodic response. We solve this system for 1000 data points and
keep the second 500 to avoid transients. The resulting time series is shown below in Fig. 15.

Figure 15
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1.16 Kaplan Yorke Map

The Kaplan Yorke map is defined [19] as

xn+1 = [axn] (mod1)

yn+1 = byn + cos(4πxn)
(16)

where we chose the parameters a = −2.0 and b = 0.2 for a chaotic state with initial conditions x0 = −0.1
and y0 = 0.5. You can set a = −1.0 for a periodic response. We solve this system for 1000 data points and
keep the second 500 to avoid transients. The resulting time series is shown below in Fig. 16.

Figure 16
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1.17 Gingerbread Man Map

The Gingerbread Man Map is defined [12,13] as

xn+1 = 1− ayn + n|xn|
yn+1 = xn

(17)

where we chose the parameters a = 1.0 and b = 1.0. For a chaotic state, initial conditions x0 = 0.5 and
y0 = 1.8, and for a periodic response x0 = 0.5 and y0 = 1.5. We solve this system for 2000 data points and
keep the last 500 to avoid transients. The resulting time series is shown below in Fig. 17.

Figure 17
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2 Autonomous Dissipative Flows

The continuous differential equations were simulated using the odeint function from the Scipy library of
Python with default function parameters.

2.1 Lorenz System

The Lorenz system used is defined as

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y, dz

dt
= xy − βz. (18)

The Lorenz system was solved with a sampling rate of 100 Hz for 100 seconds with only the last 20 seconds
used to avoid transients. For a chaotic response, parameters of σ = 10.0, β = 8.0/3.0, and ρ = 105 and
initial conditions [x0, y0, z0] = [10−10, 0, 1] are used (see Fig. 18). For a periodic response set ρ = 100.

Figure 18
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2.2 Rössler System

The Rössler system used was defined as

dx

dt
= −y − z, dy

dt
= x+ ay,

dz

dt
= b+ z(x− c), (19)

The Lorenz system was solved with a sampling rate of 15 Hz for 1000 seconds with only the last 170 seconds
used to avoid transients. For a chaotic response, parameters of a = 0.15, b = 0.2, and c = 14 and initial
conditions [x0, y0, z0] = [−0.4, 0.6, 1.0] are used (see Fig. 19). For a periodic response set a = 0.10.

Figure 19
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2.3 Coupled Rössler-Lorenz System

The coupled Lorenz-Rössler system is defined as

dx1
dt

= −y1 − z1 + k1(x2 − x1),

dy1
dt

= x1 + ay1 + k2(y2 − y1),

dz1
dt

= b2 + z1(x1 − c2) + k3(z2 − z1),

dx2
dt

= σ(y2 − x2),

dy2
dt

= λx2 − y2 − x2z2,

dz2
dt

= x2y2 − b1z2,

(20)

where b1 = 8/3, b2 = 0.2, c2 = 5.7, k1 = 0.1, k2 = 0.1, k3 = 0.1, λ = 28, σ = 10, and a = 0.25 for a
periodic response and a = 0.51 for a chaotic response. This system was simulated at a frequency of 50 Hz
for 500 seconds with the last 300 seconds used as shown in Fig. 24.

Figure 20
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2.4 Bi-Directional Coupled Rössler System

The Bi-directional Rössler system is defined as

dx1
dt

= −w1y1 − z1 + k(x2 − x1),

dy1
dt

= w1x1 + 0.165y1,

dz1
dt

= 0.2 + z1(x1 − 10),

dx2
dt

= −w2y2 − z2 + k(x1 − x2),

dy2
dt

= w2x2 + 0.165y2,

dz2
dt

= 0.2 + z2(x2 − 10),

(21)

with w1 = 0.99, w2 = 0.95, and k = 0.05. This was solved for 1000 seconds with a sampling rate of 10 Hz.
Only the last 140 seconds of the solution are used as shown in Fig. 25.

Figure 21
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2.5 Chua Circuit

Chua’s circuit is based on a non-linear circuit and is described as

dx

dt
= α(y − f(x)),

dy

dt
= γ(x− y + z),

dz

dt
= −βy,

(22)

where f(x) is based on a non-linear resistor model defined as

f(x) = m1x+
1

2
(m0 +m1) [|x+ 1| − |x− 1|] . (23)

The system parameters are set to β = 27, γ = 1, m0 = −3/7, m1 = 3/7, and α = 10.8 for a periodic
response and α = 12.8 for a chaotic response. The system was simulated for 200 seconds at a rate of 50 Hz
and the last 80 seconds were used for the chaotic response shown in Fig. 22.

Figure 22
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2.6 Double Pendulum

The double pendulum is a staple benchtop experiment for investigated chaos in a mechanical system. A
point-mass double pendulum’s equations of motion are defined as shown in Eq. (24), where the system

dθ1
dt

= ω1,

dθ2
dt

= ω2,

dω1

dt
=
−g(2m1 +m2)s(θ1)−m2s(θ1 − 2θ2)− 2s(θ1 − θ2)m2

(
ω2
2`2 + ω2

1`1c(θ1 − θ2)
)

`1(2m1 +m2 −m2c(2θ1 − 2θ2)
,

dω2

dt
=

2s(θ1 − θ2)
(
ω2
1`1(m1 +m2) + g(m2 +m2)c(θ1) + ω2

2`2m2c(θ1 − θ2)
)

`2(2m1 +m2 −m2c(2θ1 − 2θ2)
.

(24)

parameters are g = 9.81 m/s2, m1 = 1 kg, m2 = 1 kg, `1 = 1 m, and `2 = 1 m. The system was solved
for 200 seconds at a rate of 100 Hz and only the last 30 seconds were used as shown in the figure below for
the chaotic response with initial conditions [θ1, θ2, ω1, ω2] = [0, 3 rad, 0, 0]. This system will have different
dynamic states based on the initial conditions, which can vary from periodic, quasiperiodic, and chaotic.

Figure 23
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2.7 Diffusionless Lorenz

The Diffusionless Lorenz attractor is defined as

dx

dt
= −y − x,

dy

dt
= −xz,

dz

dt
= xy +R,

(25)

The system parameter is set to R = 0.40 for a chaotic response and R = 0.25 for a periodic response. The
initial conditions were set to [x, y, z] = [1.0,−1.0, 0.01]. The system was simulated for 1000 seconds at a rate
of 40 Hz and the last 250 seconds were used for the chaotic response shown in Fig. 26.

Figure 24
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2.8 Complex Butterfly

The Complex Butterfly attractor is defined as

dx

dt
= a(y − x),

dy

dt
= zsgn(x),

dz

dt
= |x| − 1,

(26)

The system parameter is set to a = 0.55 for a chaotic response and a = 0.15 for a periodic response. The
initial conditions were set to [x, y, z] = [0.2, 0.0, 0.0]. The system was simulated for 1000 seconds at a rate of
10 Hz and the last 500 seconds were used for the chaotic response shown in Fig. 27.

Figure 25
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2.9 Chen’s System

Chen’s System is defined [?] as

dx

dt
= a(y − x),

dy

dt
= (c− a)x− xz + cy,

dz

dt
= xy − bz,

(27)

The system parameters are set to a = 35, b = 3, and c = 28 for a chaotic response and a = 30 for a periodic
response. The initial conditions were set to [x, y, z] = [−10, 0, 37]. The system was simulated for 500 seconds
at a rate of 200 Hz and the last 15 seconds were used for the chaotic response shown in Fig. 28.

Figure 26
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2.10 Hadley Circulation

The Hadley Circulation system is defined as

dx

dt
= −y2 − z2 − ax+ aF,

dy

dt
= xy − bxz − y +G,

dz

dt
= bxy + xz − z,

(28)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [−10, 0, 37] [a, b, F,G] = [0.3, 4, 8, 1]

50 [21000, 25000]
Periodic [x0, y0] = [−10, 0, 37] [a, b, F,G] = [0.25, 4, 8, 1]

Figure 27
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2.11 ACT Attractor

The ACT attractor is defined [2] as

dx

dt
= α(x− y),

dy

dt
= −4αy + xz + µx3,

dz

dt
= −δαz + xy + βz2,

(29)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.5, 0, 0] [α, µ, δ, β] = [2.0, 0.02, 1.5,−0.07]

50 [21000, 25000]
Periodic [x0, y0, z0] = [0.5, 0, 0] [α, µ, δ, β] = [2.5, 0.02, 1.5,−0.07]

Figure 28
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2.12 Rabinovich-Frabrikant Attractor

The Rabinovich-Frabrikant attractor is defined [11] as

dx

dt
= α(x− y),

dy

dt
= −4αy + xz + µx3,

dz

dt
= −δαz + xy + βz2,

(30)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [−1, 0, 0.5] [α, γ] = [1.13, 0.87]

30 [12000, 15000]
Periodic [x0, y0, z0] = [−1, 0, 0.5] [α, γ] = [1.16, 0.87]

Figure 29
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2.13 Linear-Feedback of Rigid-Body-Motion System

The Linear-Feedback of Rigid-Body-Motion System is defined [9] as

dx

dt
= −yz + ax,

dy

dt
= xz + by,

dz

dt
=

1

3
xy + cz,

(31)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.2, 0.2, 0.2] [a, b, c] = [5.0,−10,−3.8]

100 [47000, 50000]
Periodic [x0, y0, z0] = [0.2, 0.2, 0.2] [a, b, c] = [5.3,−10,−3.8]

Figure 30
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2.14 Moore-Spiegel Oscillator

The Moore-Spiegel Oscillator is defined [4] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −z − (T −R+Rx2)y − Tx,

(32)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.2, 0.2, 0.2] [T,R] = [7.0, 20]

100 [45000, 50000]
Periodic [x0, y0, z0] = [0.2, 0.2, 0.2] [T,R] = [7.8, 20]

Figure 31
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2.15 Thomas Cyclically Symmetric Attractor

The Thomas Cyclically Symmetric Attractor is defined [26] as

dx

dt
= −bx+ sin(y),

dy

dt
= −by + sin(z),

dz

dt
= −bz + sin(x),

(33)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.1, 0, 0] [b] = [0.18]

10 [5000, 10000]
Periodic [x0, y0, z0] = [0.1, 0, 0] [b] = [0.17]

Figure 32
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2.16 Halvorsens Cyclically Symmetric Attractor

The Halvorsens Cyclically Symmetric Attractor is defined as

dx

dt
= −ax− by − cz − y2,

dy

dt
= −ay − bz − cx− z2,

dz

dt
= −az − bx− cy − x2,

(34)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [−5, 0, 0] [a, b, c] = [1.45, 4, 4]

200 [35000, 40000]
Periodic [x0, y0, z0] = [−5, 0, 0] [a, b, c] = [1.85, 4, 4]

Figure 33
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2.17 Burke-Shaw Attractor

The Burke-Shaw Attractor is defined [24] as

dx

dt
= −s(x+ y),

dy

dt
= −y − sxz,

dz

dt
= sxy + V,

(35)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.6, 0, 0] [s] = [10]

200 [95000, 100000]
Periodic [x0, y0, z0] = [0.6, 0, 0] [s] = [12]

Figure 34
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2.18 Rucklidge Attractor

The Rucklidge Attractor is defined [7] as

dx

dt
= −kx+ λy − yz,

dy

dt
= x,

dz

dt
= −z + y2,

(36)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [1, 0, 4.5] [k, λ] = [1.6, 6.7]

50 [45000, 50000]
Periodic [x0, y0, z0] = [1, 0, 4.5] [k, λ] = [1.1, 6.7]

Figure 35
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2.19 WINDMI Attractor

The WINDMI Attractor is defined [27] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −az − y + b− ex,

(37)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [1, 0, 4.5] [a, b] = [0.8, 2.5]

20 [15000, 20000]
Periodic [x0, y0, z0] = [1, 0, 4.5] [a, b] = [0.9, 2.5]

Figure 36
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2.20 Simplest Quadratic Chaotic Flow

The Simplest Quadratic Chaotic Flow is defined [25] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −az − y + b− ex,

(38)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [−0.9, 0, 0.5] [a, b] = [2.017, 1]

20 [15000, 20000]
Periodic [x0, y0, z0] = [−0.9, 0, 0.5] [a, b] = [NA]

Figure 37
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2.21 Simplest Cubic Chaotic Flow

The Simplest Cubic Chaotic Flow is defined [20] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −az + xy2 − x,

(39)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0, 0.96, 0] [a, b] = [2.05, 2.5]

20 [15000, 20000]
Periodic [x0, y0, z0] = [0, 0.96, 0] [a, b] = [2.11, 2.5]

Figure 38
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2.22 Simplest Piecewise-Linear Chaotic Flow

The Simplest Piecewise-Linear Chaotic Flow is defined [28] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −az − y + |x| − 1,

(40)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0,−0.7, 0] [a] = [0.6]

40 [35000, 40000]
Periodic [x0, y0, z0] = [0,−0.7, 0] [a] = [0.7]

Figure 39
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2.23 Double Scroll Attractor

The Double Scroll Attractor is defined [15] as

dx

dt
= y,

dy

dt
= z,

dz

dt
= −a(z + y + x− sgn(x)),

(41)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0, z0] = [0.01, 0.01, 0] [a] = [0.8]

20 [15000, 20000]
Periodic [x0, y0, z0] = [0.01, 0.01, 0] [a] = [1.0]

Figure 40
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3 Delayed Flows

3.1 Mackey-Glass Delayed Differential Equation

The Mackey-Glass Delayed Differential Equation is defined as

x(t) = −γx(t) + β
x(t− τ)

1 + x(t− τ)
n (42)

with τ = 2, β = 2, γ = 1, and n = 9.65. This was solved for 400 seconds with a sampling rate of 50 Hz. The
solution was then downsampled to 5 Hz and the last 200 seconds were used as shown in Fig. 43.

Figure 41
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4 Periodic and Quasiperiodic Functions

4.1 Periodic Sinusoidal Function

The sinusoidal function is defined as
x(t) = sin(2πt) (43)

This was solved for 40 seconds with a sampling rate of 50 Hz.

Figure 42

4.2 Quasiperiodic Function

This function is generated using two incommensurate periodic functions as

x(t) = sin(πt) + sin(t). (44)

This was sampled such that t ∈ [0, 100] at a rate of 50 Hz.

Figure 43
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5 Driven Dissipative Flows

5.1 Driven Simple Pendulum

The point mass, driven simple pendulum with viscous damping is described as

dθ

dt
= ω,

dω

dt
= −g

`
sin(θ) +

A

m`2
sin(ωmt)− cω,

(45)

where g = 9.81 m/s2 is the gravitational constant, ` = 1 m is the length of the pendulum arm, m = 1 kg is
the mass of the point mass, A = 5 Nm is the amplitude of forcing, and ωm is the driving frequency, where
ωm = 1 rad/s for a periodic response and ωm = 2 rad/s for a chaotic response. The system was simulated
for 300 seconds at a rate of 50 Hz and the last 100 seconds were used for the chaotic response as shown in
the figure below.
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5.2 Base-excited Magnetic Pendulum

Let the total mass of the rotating components be M , the distance from the rotation center O to the mass
center of the rotating assembly rcm, and the mass moment of inertia of the rotating components about their
mass center be Icm. Further, assume that the magnetic interactions are well approximated by a dipole model
with m1 = m2 = m representing the magnitudes of the dipole moment. To develop the equation of motion,

Base Excitation

Datum

Figure 44: Rendering of experimental setup in comparison to reduced model, where b(t) = A sin(ωt) is the
base excitation with frequency ω and amplitude A, rcm is the effective center of mass of the pendulum, d
is the minimum distance between magnets m1 = m2 = m (modeled as dipoles), and ` is the length of the
pendulum.

we use Lagrange’s equation (Eq. (56)), so the potential energy V , kinetic energy T , and non-conservative
moments R are needed. In this analysis the damping moments and the moments generated from the magnetic
interaction are treated as non-conservative. The potential and kinetic energy are defined as

T =
1

2
M |~vcm|2 +

1

2
Icmθ̇

2,

V = −Mgrcm cos(θ),
(46)

where ~vcm is the velocity of the mass center given by

~vcm = rcmθ̇ [cos(θ)ε̂x + sin(θ)ε̂y] +A cos(ωt)ε̂x. (47)

In Eq. (49), A cos(ωt) is introduced from the base excitation b(t) = A cos(ωt) in the x direction with
A as the amplitude and ω as the frequency and ε̂x and ε̂y are the unit vectors in the x and y directions,
respectively.

The non-conservative moments are caused by the energy lost to damping. For our analysis, we consider
only viscous damping τv with the resulting torque defined as defined as

τv = µv θ̇ (48)

where µv is the coefficient for viscous damping.
To begin the derivation of the torque induced from the magnetic interaction τm, consider two, in-plane

magnets as shown in Fig. 46. From this representation, the magnetic force acting on each magnet is calculated

46



as

Fr =
3µom

2

4πr4
[2c(φ− α)c(φ− β)− s(φ− α)s(φ− β)] ,

Fφ =
3µom

2

4πr4
[s(2φ− α− β)] ,

(49)

where m1 and m2 are the magnetic moments, µo is the magnetic permeability of free space, and c(∗) = sin(∗)
and s(∗) = sin(∗). Equation (51) assumes that the cylindrical magnets used in the experiment can be
approximated as a dipole. These magnetic forces are then adapted to the physical pendulum with α = π/2
and β = π/2− θ. Additionally, φ and r are calculated from θ, d, and ` as

φ =
π

2
− arcsin

(
`

r
sin(θ)

)
, and (50)

r =

√
[` sin(θ)]

2
+ [d+ `(1− cos(θ))]

2
. (51)

The moment induced by the magnetic interaction is then

τm = `Fr cos(φ− θ)− `Fφ sin(φ− θ). (52)

Using τm from Eq. (54) and the non-conservative torque from Eq. (50), R is defined as

R = τv + τm. (53)

Finally, the equation of motion for the base-excited magnetic single pendulum is found by substituting the
above expressions into Lagrange’s equation and noting that L = T − V

∂

∂t

(
∂L

∂θ̇

)
− ∂L

∂θ
+R = 0. (54)

The resulting equation of motion is put into state space form using Python’s sympy package.
The following parameters are used:

[l, g, rcm, Io, A, ω, c, q, d, µ] =

[0.1038, 0.208, 9.81, 0.18775, 0.00001919, 0.021 (0.022 for chaotic), 3π, 0.003, 1.2, 0.032, 1.257E − 6],
(55)

where m (mass), l (length), g (gravity), rcm (distance to center of mass), Io (inertia about origin), ω (base
excitation frequency), A (base excitation amplitude), c (viscous damping parameter) µ (universal magnetic
constant), and d (minimum distance between magnets) are parameters with metric units (meters, seconds,
radians, kilograms).

The system was simulated for 100 seconds at a rate of 200 Hz and the last 25 seconds were used for the
chaotic response as shown in the figure below.
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5.3 Driven Van der Pol Oscillator

The Driven Van der Pol Oscillator is defined as

dx

dt
= y,

dy

dt
= −x+ b(1− x2)y +A sin(ωt),

(56)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [−1.9, 0.0] [b, A, ω] = [3.0, 5, 1.788]

40 [7000, 12000]
Periodic [x0, y0] = [−1.9, 0.0] [b, A, ω] = [2.9, 5, 1.788]

Figure 45
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5.4 Shaw Van der Pol Oscillator

The Shaw Van der Pol Oscillator is defined as

dx

dt
= y + sin(ωt),

dy

dt
= −x+ b(1− x2)y,

(57)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [1.3, 0.0] [b, A, ω] = [1, 5, 1.8]

25 [7500, 12500]
Periodic [x0, y0] = [1.3, 0.0] [b, A, ω] = [1, 5, 1.4]

Figure 46
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5.5 Duffing Van der Pol Oscillator

The Duffing Van der Pol Oscillator is defined as

dx

dt
= y,

dy

dt
= µ(1− γx2)y − x3 +A sin(ωt),

(58)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [0.2, 0.0] [µ, γ,A, ω] = [0.2, 8, 0.35, 1.2]

20 [5000, 10000]
Periodic [x0, y0] = [0.2, 0.0] [µ, γ,A, ω] = [0.2, 8, 0.35, 1.3]

Figure 47
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5.6 Forced Brusselator

The Forced Brusselator is defined as

dx

dt
= (x2)y − (b+ 1)x+ a+A sin(ωt),

dy

dt
= −(x2)y + bx,

(59)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [0.3, 2.0] [a, b, A, ω] = [0.4, 1.2, 0.05, 1.0]

20 [5000, 10000]
Periodic [x0, y0] = [0.3, 2.0] [a, b, A, ω] = [0.4, 1.2, 0.05, 1.1]

Figure 48
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5.7 Ueda Oscillator

The Ueda Oscillator is defined as

dx

dt
= y,

dy

dt
= −x3 − by +A sin(ωt),

(60)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [2.5, 0.0] [b, A, ω] = [0.05, 7.5, 1.0]

50 [20000, 25000]
Periodic [x0, y0] = [2.5, 0.0] [b, A, ω] = [0.05, 7.5, 1.2]

Figure 49
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5.8 Duffings Two-Well Oscillator

The Duffings Two-Well Oscillator is defined as

dx

dt
= y,

dy

dt
= −x3 + x− by +A sin(ωt),

(61)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [2.5, 0.0] [b, A, ω] = [0.25, 0.4, 1.0]

20 [5000, 10000]
Periodic [x0, y0] = [2.5, 0.0] [b, A, ω] = [0.25, 0.4, 1.1]

Figure 50
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5.9 Rayleigh Duffing Oscillator

The Rayleigh Duffing Oscillator is defined as

dx

dt
= y,

dy

dt
= µ(1− γy2)y − x3 +A sin(ωt),

(62)

Dynamics Initial Cond. Parameters Sample Freq. (Hz) Sample Domain
Chaotic [x0, y0] = [0.3, 0.0] [µ, γ,A, ω] = [0.2, 4.0, 0.3, 1.2]

20 [5000, 10000]
Periodic [x0, y0] = [0.3, 0.0] [µ, γ,A, ω] = [0.2, 4.0, 0.3, 1.4]

Figure 51
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6 Human/Medical Data

6.1 EEG Data

The EEG signal was taken from andrzejak et al. [1]. Specifically, the first 5000 data points from the EEG data
of a healthy patient from set A (file Z-093) was used and the first 5000 data points of a patient experiencing
a seizure from set E (file S-056) was used (see figure below for case during seizure).

6.2 ECG Data

The Electrocardoagram (ECG) data was taken from SciPy’s misc.electrocardiogram data set. This ECG
data was originally provided by the MIT-BIH Arrhythmia Database [22]. We used data points 3000 to 5500
during normal sinus rhythm and 8500 to 11000 during arrhythmia (arrhythmia case shown below in figure).
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